Reg. No. : \square

Question Paper Code : 50584

B.E/B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Sixth Semester
Computer Science and Engineering
10144 CSE 21/MA 51/MA 1251/10177 MA 401 - NUMERICAL METHODS

(Common to Information Technology)
(Regulations 2008/2010)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20 \mathrm{marks})$

1. What is the order of convergence of an iterative method for finding the root of the equation $f(x)=0$?
2. Solve the equations $x+2 y=1$ and $3 x-2 y=7$ by Gauss-Elimination method.
3. State Newton's forward interpolation formula.
4. Using Lagrange's formula, find the polynomial to the given data:

$$
\begin{array}{lllc}
\mathrm{X}: & 0 & 1 & 3 \\
\mathrm{Y}: & 5 & 6 & 50
\end{array}
$$

5. What are the errors in Trapezoidal and Simpson's rules of numerical integration?
6. State the three point Gaussian quadrature formula.
7. Find $y(0.1)$ if $\frac{d y}{d x}=1+y, y(0)=1$ using Taylor series method.
8. State the fourth order Runge-Kutta algorithm.
9. Write the diagonal five point formula for solving the two dimensional Laplace equation $\nabla^{2} u=0$.
10. Using finite difference solve $y^{\prime \prime}-y=0$ given $y(0)=0, y(1)=1, n=2$.

$$
\begin{equation*}
\text { PART B }-(5 \times 16=80 \text { marks }) \tag{8}
\end{equation*}
$$

11. (a) (i) Solve the equation $x \log _{10} x=1.2$ using Newton's method.
(ii) Solve the equations using Gauss-Seidal iterative method:

$$
\begin{align*}
4 x+2 y+z & =14 \tag{8}\\
x+5 y-z & =10 \text { and } \\
x+y+8 z & =20
\end{align*}
$$

Or
(b) (i) Find the inverse of the following matrix Gauss Jordan method:

$$
\left[\begin{array}{ccc}
2 & 2 & 6 \tag{8}\\
2 & 6 & -6 \\
4 & -8 & -8
\end{array}\right]
$$

(ii) Find all the eigen values of $A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right]$ using power method. (8)
12. (a) (i) Using Newton's divided difference formula, find $f(x)$ from the following data and hence find $f(4)$.

$$
\begin{array}{lllcc}
x: & 0 & 1 & 2 & 5 \tag{8}\\
f(x): & 2 & 3 & 12 & 147
\end{array}
$$

(ii) Find the value of y when $x=5$ using Newton's interpolation

- formula from the following table :

$$
\begin{array}{lllll}
x: & 4 & 6 & 8 & 10 \tag{8}\\
y: & 1 & 3 & 8 & 16
\end{array}
$$

Or

(b). (i) Use Lagrange's method to find $\log _{10} 656$, given that $\log _{10} 654=2.8156, \quad \log _{10} 658=2.8182, \quad \log _{10} 659=2.8189 \quad$ and $\log _{10} 661=2.8202$.
(ii) Obtain the cubic spline for the following data to find $y(0.5)$.

$$
\begin{array}{lllll}
x: & -1 & 0 & 1 & 2 \\
2 & -1 & 1 & 3 & 35
\end{array}
$$

13. (a) (i) Apply three point Gaussian quadrature formula to evaluate

$$
\begin{equation*}
\int_{0}^{1} \frac{\sin x}{x} d x \tag{8}
\end{equation*}
$$

(ii) Find the first and second order derivatives of $f(x)$ at $x=1.5$ for the following data :
$\begin{array}{lllllll}x: & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0\end{array}$
$f(x): \quad 3.375 \quad 7.000,13.625 \quad 24.000 \quad 38.875 \quad 59.000$

$x:$	1.5	2.0	2.5	3.0	3.5	4.0
$f(x):$	3.375	7.000	13.625	24.000	38.875	59.000

Or
(b) (i) The velocities of a car running on a straight rod at intervals of 2 minutes are given below :

$$
\begin{array}{cccccccc}
\text { Time (min) : } & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
\text { Velocity (km/hr) : } & 0 & 22 & 30 & 27 & 18 & 7 & 0 \tag{8}
\end{array}
$$

Using Simpson's $\frac{1}{3}$-rd rule find the distance covered by the car.
(ii) Evaluate $\int_{2}^{2.4} \int_{4}^{4.4} x y d x d y$ by Trapezoidal rule taking $h=k=0.1$.
14. (a) (i) Using Adam's Bashforth method, find $y(4.4)$ given that $5 x y^{\prime}+y^{2}=2, \quad y(4)=1, \quad y(4.1)=1.0049, \quad y(4.2)=1.0097 \quad$ and $y(4.3)=1.0143$.
(ii) Using Taylor's series method, find y at $x=1.1$ by solving the equation $\frac{d y}{d x}=x^{2}+y^{2} ; y(1)=2$ carry out the computations upto fourth order derivative.

Or

(b) Using Runge-Kutta method of fourth order, find the value of y at $x=0.2,0.4,0.6$ given $\frac{d y}{d x}=x^{3}+y, y(0)=2$. Also find the value of y at $x=0.8$ using Milne's predictor and corrector method.
15. (a) Solve $\nabla^{2} u=8 x^{2} y^{2}$ over the square $x=-2, x=2, y=-2, y=2$ with $u=0$ on the boundary and mesh length $=1$.

Or
(b) (i) Solve $u_{x x}=32 u_{t}, h=0.25$ for $t \geq 0,0<x<1 . u(0, t)=0, u(x, 0)=0$, $u(1, t)=t$.
(ii) Solve $4 u_{t t}=u_{x x}, u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x), u_{t}(x, 0)=0$, $h=1$ upto $t=4$.

